Text-Independent Speaker Authentication with Spiking Neural Networks

نویسندگان

  • Simei Gomes Wysoski
  • Lubica Benusková
  • Nikola K. Kasabov
چکیده

This paper presents a novel system that performs text-independent speaker authentication using new spiking neural network (SNN) architectures. Each speaker is represented by a set of prototype vectors that is trained with standard Hebbian rule and winner-takes-all approach. For every speaker there is a separated spiking network that computes normalized similarity scores of MFCC (Mel Frequency Cepstrum Coefficients) features considering speaker and background models. Experiments with the VidTimit dataset show similar performance of the system when compared with a benchmark method based on vector quantization. As the main property, the system enables optimization in terms of performance, speed and energy efficiency. A procedure to create/merge neurons is also presented, which enables adaptive and on-line training in an evolvable way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiking Neural Networks for Text-Independent Speaker Authentication

In this ongoing research our aim is to explore the use of biologically realistic neural networks in the textindependent speaker identification/verification problem. Here, firstly we briefly describe the problem and the current state-of-art techniques. It is followed by the conceptual description and qualitative analysis of a new speaker verification system based on spiking neural networks (SNNs...

متن کامل

On the use of neural networks to combine utterance and speaker verification systems in a text-dependent speaker verification task

Speaker Verification and Utterance Verification are examples of techniques that can be used for Speaker Authentication purposes. Speaker Verification consists of accepting or rejecting the claimed identity of a speaker by processing samples of his/her voice. Utterance Verification systems make use of a set of speaker-independent speech models to recognize a certain utterance and decide whether ...

متن کامل

Text-independent Speaker Verification Based on Probabilistic Neural Networks

In this paper, a text-independent Probabilistic Neural Network (PNN)-based Speaker Verification system is presented. Modular structure with a distinct PNN for each enrolled speaker is used. A gender-dependent universal background model is built to represent the impostor speakers. A detailed description of the system, as well as the time required for training and processing all the test trials i...

متن کامل

Locally recurrent probabilistic neural network for text-independent speaker verification

This paper introduces Locally Recurrent Probabilistic Neural Networks (LRPNN) as an extension of the well-known Probabilistic Neural Networks (PNN). A LRPNN, in contrast to a PNN, is sensitive to the context in which events occur, and therefore, identification of time or spatial correlations is attainable. Besides the definition of the LRPNN architecture a fast three-step training method is pro...

متن کامل

Probabilistic Neural Networks Combined with Gmms for Speaker Recognition over Telephone Channels

In this paper we study the applicability of Probabilistic Neural Networks (PNNs) as core classifiers to medium scale speaker recognition over fixed telephone networks. In particular, banking applications with up to 400 enrolled speakers and short training times are targeted. Two PNN-based open-set text-independent systems for Speaker Identification and Speaker Verification correspondingly are p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007